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Fate of magnetic walls in nematic liquid crystals

M. Simões, A. J. Palangana,* and F. C. Cardoso
Departamento de Fı´sica, Universidade Estadual de Londrina, Campus Universita´rio, 86051-970 Londrina PR, Brazil

~Received 22 December 1997; revised manuscript received 18 March 1998!

The origin of the instability that leads to the disappearance of the one-dimensional periodic walls formed
above Fredericksz’s threshold of some nematic liquid crystals is investigated. It is shown that these walls are
built in a configuration that—even being an extreme of the elastic free energy—is not a local minimum, but a
local maximum. The mechanism that gives rise to this instability is investigated, and it is shown how the
director’s fluctuations lead to the destruction of the walls.@S1063-651X~98!07308-5#

PACS number~s!: 61.30.Gd, 61.30.Jf, 64.70.Md
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I. INTRODUCTION

For a broad class of oriented nematic liquid cryst
~NLC!, with positive diamagnetic anisotropy, the action
an external magnetic field can lead to the formation of o
dimensional periodic structures~walls! above the Fre`eder-
icksz threshold@1,2#. This phenomenon has been the subj
of several works dealing with its theoretical and experim
tal aspects@3,4#. Since the pioneering work of Lonberget al.,
there has been a more or less well-established framewo
interpret the main mechanism of theformationof these struc-
tures. Recently, this subject has achieved a renewed int
because there are some open problems concerning the
i.e., the destination of these periodic structures. It is w
known that for values of the applied magnetic field far abo
the Frèedericksz threshold, the walls tend to disappear a
some time@5,6#. The basic mechanism for the destruction
these walls~henceforth denoted by MW! is the instability
beginning at the moment in which the flux of matter@3# that
gives rise to these structures stops. In this moment the
tremely harmonic and periodic walls pattern begins an
stable phase in which all its one-dimensional and perio
regularity is lost.

Habitually unstable configurations are found in physi
systems after the action of some transient force opera
during a finite time interval@7,8#. While the transient action
is working, the system goes to a configuration that, as s
as it vanishes, no longer has the least energy. In the cas
the building of MW, the transient force is given by the flu
of the nematic material inside the sample@3#, which is also
responsible, for example, for the system regularity and
mensionality@9#. In a remarkable work, Lonberget al. @3#
have shown how this mechanism works: the external m
netic field rotates the director, which, in turn, stimulates
fluid flow generating a nonuniform rotation pattern of t
director. This rotation reinforces opposite rotations of neig
boring regions of the sample. This fluid flow process h
been confirmed by many experimental and theoretical stu
@10#. Moreover, it has been shown that as soon as the di
tor reaches its maximum bending, the velocity of the flu
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tadual de Maringa´, Av. Colombo, 5790, 87020-900 Maringa´ PR,
Brazil.
PRE 581063-651X/98/58~2!/2011~7!/$15.00
s

-

t
-

to

est
te,

ll
e
r

f

x-
-

ic

l
g

n
of

i-

g-
a

-
s
es
c-

flow becomes negligible and disappears. Of course, the
that the walls do not have the least energy is a neces
condition, but not sufficient, to promote its instability. Ou
aim in this work is to grasp the mechanisms by which the
structures begin their decay and for this purpose some m
ematical analysis must necessarily be done. This does
mean that the understanding of the fate of the walls can
be put in physical terms. In fact, the fluid flow leads t
system to a configuration that is an extremum of the ene
but, as a simple elastic argument shows, it is not the confi
ration with the least energy. But even not being in the grou
state, the walls could be in a local minimum at which t
system might remain indefinitely. We will show that, as t
experiments confirm, the MW configuration is indeed a lo
maximum. In order to prove it, the second functional deriv
tive of the free energy around the walls’ configuration mu
be studied. As in the differential calculus, the system will
in an unstable configuration if this second functional deriv
tive is negative. One appropriate tool for deciding the sign
the second functional derivative is the Jacobi criterion@11#,
and through it we will show that around the walls the seco
functional derivative is really negative. An important aspe
of this demonstration is that nothing more than the osci
tory and one-dimensional character of the MW must be
sumed. Therefore, these walls’ characteristics must be a
core of the reasons for their instability.

Another contribution of this work is the understanding
the mechanism of decay of the walls. It will be shown th
the fluctuations responsible for the walls’ decay are localiz
in the regions where the director, even in the presence of
external magnetic field, does not turn at all. Along the
regions—which are the site of the walls’ nodes—there i
critical balance between the action of the external magn
field that tries to turn the director direction and the elas
energy that, due to the opposite configuration of the direc
in the neighbor regions, tries to maintain the director with
null bending. As we will demonstrate, the instability on
appears due to the weakness of this balance. Around
points of null bending, the fluctuations will increase exp
nentially and destroy the walls’ regularity.

This paper is organized as follows. Section II is dedica
to the presentation of the basic equations of the theore
approach~the mathematical details are left to the Appendi!.
It is shown that, although it is at an extreme of the elas
free energy, the system is at an unstable configuration
2011 © 1998 The American Physical Society
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cause it is in a local maximum. In Sec. III, we present t
main results of our calculations, with emphasis on
mechanism by which this instability begins the walls’ deca
We also discuss how any small fluctuation around the e
librium position of the MW gives rise to an irreversible e
ponential growing process of destruction of the parame
that characterizes the walls. In Sec. IV, some conclud
remarks are drawn.

II. FUNDAMENTALS

The aim of this section is to show that the transient t
takes the system to an unstable configuration is the cohe
motion of the nematic material, and that the structures b
in this way do not possess the smallest possible energy
ing a local maximum. In order to prove this statement, it
assumed that the NLC can be described by the so-ca
Eriksen-Leslie-Parodi approach@12–16# and it is considered
a slab with dimensionsa along thex axis,b along they axis,
and d along thez axis such thata@b@d. The system is
previously prepared to be uniformly aligned along thex di-
rection. After that, an external controlled magnetic fieldH,
greater than the Fredericks threshold, is applied along thy
direction@17#. To describe the textures produced in the ne
atic material, the components of the director are expresse
the planar geometry:

nx5cosu~x,y,z!, ny 5sinu~x,y,z!, nz50, ~2.1!

whereu(x,y,z) is the angle between the directornW and thex
direction. The expression of the total free energy in the t
elastic constant approximation (K115 K33), by taking into
account the magnetic field coupling, is@13,1,5#

F5E
V
H 1

2
K33@~]xu!2 1~]yu!2#1

1

2
K22~]zu!2

2
1

2
xaH2ny

2J dV, ~2.2!

whereK11, K22, andK33 are the elastic constants of spla
twist, and bend, respectively, andV is the volume of the
sample.

The motion of nematic fluid is described through the a
isotropic version of the Navier-Stokes’s equation

rS ]Va

]t
1Vb

]Va

]xb
D5

]

]xb
~2pdab1sba!, ~2.3!

wherer is the density of the system,Va is thea component
of the velocity,p is the pressure, andsba is the associated
anisotropic stress tensor@1,18,19#, which is dependent on th
velocity of the fluidVW , on the bending of the directoru, and
on its time variation rateu̇.

In the geometry fixed above, the equation of motion of
director ~balance of torque equation! assumes the form@9#
e
e
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g1] tu5g1Wxy2g2@Axy~nx
22ny

2!1~Ayy2Axx!nxny#

1K33@]x
2u 1]y

2u#1K22]z
2u1xaH2nxny ,

~2.4!

where the inertial terms were not considered,g1and g2 are
the shear torque coefficients,Aab5 1

2 (]aVb1]bVa), Wab
5 1

2 (]aVb2]bVa), and, as usual, the fluid is considered i
compressible. Since the viscosity tensors i j , appearing in
Eq. ~2.3!, and the coefficients of Eq.~2.4! depend onu
@1,18,19# through combinations ofnx , ny , and its powers,
these two differential equations result in a set of coupled,
strongly nonlinear, equations. Of course, it seems imposs
to find any analytical solution of this problem with the co
rect boundary conditions. Srajeret al. @10# studied a numeri-
cal solution of these equations, using the parameters of
poly-g-benzil-glutamate~PBG!. From the results of their pa
per, it is possible to see that after some minutes the ben
of the director reaches its maximum value~i.e., ] tu50) and
the matter flux flow becomes zero (i.e.,VW50). By substitut-
ing this condition in Eq.~2.3! and Eq.~2.4! one discovers
that Eq.~2.3! becomes identically zero, and Eq.~2.4! results
in

K33@]x
2u1]y

2u#1K22]z
2u1xaH2nxny50, ~2.5!

which is the equation governing the steady state of the wa
Equation~2.5! describes the configuration assumed by

system after the coherent movement of the nematic fluid
ceased. It is also the equation that gives us the extrema o
Frank free energy, Eq.~2.2!. Therefore, as we have pointe
out, all that the dynamics of the flux flow permit us to co
clude is that the flux brings the system to a configuration t
corresponds to an extremum of the elastic energy of
problem. But the configuration built in this way is not stat
After some time—in many cases, several hours—these o
dimensional walls disappear. A typical lyotropic sample co
sists of potassium laurate~KL, 34.5!, potassium chloride
~KCl, 3.0!, and water~62.5! @17#. The concentrations are
indicated in weight percent. The system is in the nema
calamitic phase (Nc) at room temperature. The method
generating the periodic distortion of the director consists
orienting an (Nc) sample in a planar geometry, with a ma
netic field (H.10 kG along thex axis!. After a well-
oriented sample is achieved, the field is applied along thy
axis. In Fig. 1, three different moments of the walls’ collap
in a NLC sample are shown. In the first photo, one sees
walls as they appear as soon as the coherent movement o
nematic fluid finishes. In the second photo, the collapse
started and the walls begin to lose their regularity. In the l
photo, the one-dimensional and periodic walls no longer
ist and all that remains are vestiges of the original structu

This decay can be understood only if the elastic energy
MW is not the lower energy allowed in the system. This
indeed true@20# and a simple comparison between the tw
configurations~with walls and without them! can tell us that
the presence of the walls puts the system out of its gro
state. But it is not sufficient to show that this new state is
unstable one. However, if we could show that the walls
in a local maximum of the free energy, we could be sure
the instability, because any small fluctuation will lead t
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FIG. 1. Lyotropic calamitic nematic phase in microslide 200 mm thick between crossed polarizers in the presence of magnetiH

;3 kG Walls parallel toHW : ~a! typical periodic distortions;~b! the walls begin to lose their regularity, after a time of exposure to
magnetic field of 15 h;~c! the one-dimensional and periodic walls no longer exist and all that remains are vestiges of the original str
~after 40 h!.
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system to a new configuration. The main objective of t
work is just to show that this is in fact the case.

Since the formal proof of this fact requires extensi
mathematics, it was placed in the Appendix, where it
proved that the walls’ configuration is indeed a local ma
mum of the free energy. Nevertheless, the idea behind
proof is quite simple. The second functional derivative of t
free energy around the walls’ configuration is computed a
it is shown that such a derivative is negative. Therefore,
cannot correspond to a stable configuration because eve
natural fluctuations of the system are enough to lead i
another configuration.

III. THE COLLAPSE OF THE WALLS

We have shown in the Appendix that the walls’ config
rations is unstable because there are fluctuationsdh that
make the quadratic formd2F, given in Eq.~A6!, negative.
However, no indication about the dynamics of this collap
was made nor any trace of the kind of fluctuations that
stroy the walls’ regularity was found. The study of how w
can find these destroyer fluctuations and extract from th
their meaning is the aim of this section. The key of o
search will be the use of the fact that Eq.~A6! is a quadratic
form. Therefore we can diagonalize it and its negative eig
values will correspond to the normal modes of the fluctuat
that erodes the walls.

Let us consider Eq.~A6!, which, after an integration by
parts, can be written as

d2F5E
0

L

dx dh$2K̃33]x
21@122h2u9~h!#%dh. ~3.1!

By expandingdh in the formdh5(n51
` cndhn, wheredhn

belongs to a complete set of functions in which eachdhn is
a solution of the Sturm-Liouville problem@21#,

2K̃33]x
2~dhn!1@122h2u9~h!#dhn5endhn, ~3.2!

Eq. ~3.1! becomes

d2F5 (
n51

`

en~cn!2. ~3.3!

As it has been proved that there are fluctuations for wh
d2F,0 , there must be someen , at least one, for which
s

s
-
e
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en,0 and these ones are the eigenvalues responsible fo
walls’ destruction. There is a simple way to understand
origin of these negative eigenvalues. Notice that by perfo
ing the associationK̃33→\2/2m, Eq. ~3.2! becomes a
Schrödinger-like equation for a wave function represented
dhn, in a potential given by

U~x!5122h2u9„h~x!…. ~3.4!

Using this association it becomes easy to understand
the negative eigenvalues of Eq.~3.2! can only exist around
the regions where the potentialU(x) is negative. It will be
shown @see Eq.~3.8! and subsequent discussion# that these
points can occur only at the points whereh'0 and this will
prove that the regions where the director does not bend a
are the ones responsible for the walls’ decadence. Furt
more, as this null bend of the director only exists due to
oscillatory character, one concludes again that the dire
periodic profile is one of the reasons for the collapse of
walls.

To see the effect of these negative eigenvalues in the t
development of the system, it is enough to take into acco
Eq. ~2.4! and to observe that, as soon as the fluid flow sto
it becomes

g̃1] th5K̃33]x
2h2h12h2u8~h!, ~3.5!

whereg̃15 4g1 /bdxaH. Now, if we seth5h01dh, where
h0 is a solution ofdF50 , one obtains fordh the differen-
tial equation

g̃1] tdh5K̃33]x
2dh2@122h2u9~h!#dh, ~3.6!

which governs the time behavior of the fluctuation. As
usual for the statistical fluctuations@22,23#, this equation is
analogous to the time-dependent Schro¨dinger equation. Ob-
viously, this is only a formal analogy and it does not me
that the nematic structure has something to do, at leas
rectly, with quantum mechanics. Using the expansion ofdh
in its normal components, Eq.~3.6! becomes a set of equa
tions with the form

g̃1] tcn52encn , ~3.7!

which, onceen are found, have a trivial solution. The impo
tant aspect of these equations is that all the fluctuationsdhn,
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with positive eigenvaluesen , are exponentially suppresse
while the ones with negative eigenvalues will grow expon
tially.

We use now the formal analogy between the time dev
opment of the fluctuations and the time-dependent Sc¨-
dinger equation to obtain a glimpse of how these nega
modes start the MW destruction. In the expansion of
potentialU(x), Eq.~3.4!, around the points whereh'0, one
obtains

U~x!512h21
9

8
h2@h8~0!#2x2, ~3.8!

where it was usedh(x).xh8(0). Equation~3.8! shows that
in the regions around the null bending of the director,
potentialU(x) is really negative (h2.1 andx2!1) and can
be approximated by a parabolic well. Putting this potentia
Eq. ~3.2!, and remembering that this equation is
Schrödinger-like equation, we see that its most negative
genvalue is nothing more than the ground state of a quan
oscillator. If one again identifiesK̃33→\2/2m, and
9/8@h8(0)#2→1/2mv2, one obtains for the ground state
Eq. ~3.2!

e0512h21
3

4
hA2K̃33h8~0!, ~3.9!

which will be the leading term of the walls’ destruction.
In this term it can be observed thatn8(0) is the paramete

of the wall that determines the magnitude of the ground s
e0 . The smallern8(0) is, the more negativee0 will be and
the greater the fluctuations will be. Since by Eq.~3.7! these
fluctuations must grow with time, one concludes thatn8(0)
will become smaller and smaller with time. This fact can a
be understood by observing thate0 is the energy of the fluc-
tuations at the well given in Eq.~3.8! and, therefore, the leas
energy will have the smallern8(0). In other words, if one
computes the generalized force associated with the vari

n8(0), f 52]e0 /]n8(0), oneobtainsf 52 3
4hA2K̃33, which

gives the same result: since the force is negative, the t
evolution of the system will diminishn8(0).

In order to fully appreciate the details of the walls’ was
ing process, we construct a wall profile in which its ge
metrical parameters are made clear and workable. Of co
it is not the exact solution of Eq.~A3!, but it results from a
numerical study of the solution@17,24# that is useful only as
long as it can help us to understand the fate of the walls. T
wall profile is described by three parameters: the walls’ a
plitudew0 , the walls’ lengthl, and the walls’ form factord,
which are shown in Fig. 2. An analytical form for this wall
given by

h~x!5w0w~x!, ~3.10!

where it is assumed that
-

l-
o
e
e

e

n
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m

te

o
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e

-
se
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-

w~x!55
sinS 2p

w
xD , 0,x,

1

4
w,

1,
1

4
w,x,

l

2
2

1

4
w,

sinX2p

w S l

2
2xD C, l

2
2

1

4
w,x,

l

2
,

~3.11!

wS l

2
1e D52wS l

2
2e D , 0,e,

l

2
, w5dl,

whered, changing between 0 and 1, controls the wall fo
~Fig. 2!. The MW described byw(x) has two distinct re-
gions. In one of them~the w region! the director bends its
orientation from one configuration to the symmetric one. T
other region~the D region! describes a saturated portion
the director. Thed value gives the fraction of each portion
Whend→1, the wall becomes a single sine function. On t
other hand, whend→0 the saturated region assumes the
tire wall. One observes from Fig. 2 that

D5l2w5l~12d! ~3.12!

is a measure of the saturated portion of the wall. Furth
more, Eq.~A3! has a conserved quantity@17,24,25#

C5
1

2
K̃33~]xh!22

1

2
h212h2u~h!, ~3.13!

which reflects the homogeneity of the system along thex
direction and is a fixed number that exists only as long as
system remains one-dimensional. Therefore, its value at
point whereh50 can be compared with its value at th
region where]xh50, giving

1

2
K̃33w0

2S 2p

l2D D 2

52
1

2
w0

212h2u~w0!, ~3.14!

which shows that as long as the system is one-dimensi
the parametersl, D, andw0 are not independent.

FIG. 2. Graphic representation of a typical wall. It is explicit
shown the saturated portionD/2, the bending portiondl/2, and the
amplitudew0 . The irreversible exponential growing fluctuations a
in such a way to reduce the amplitudew0 and the saturated portion
D.
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As we have already remarked, the cornerstone of the
stability is the one-dimensional and oscillatory character
the walls. Therefore, the starting point of the walls’ decay
strongly connected to the breakdown of this character.
system has to abandon the one-dimensionality. It has b
demonstrated, in Eq.~3.13!, that the one-dimensional cha
acter of the walls leads to the conservation of a quantity t
in Eq. ~3.14!, connects their geometrical parameters. T
collapse of the walls begins with the destruction of this co
nection. This means that, if the system tries to be non-o
dimensional these parameters must evolve independe
Let us show now in what manner this happens.

By using the value ofn8(0), obtained from Eq.~3.11!,
and by putting it in Eq.~3.9!, one obtains

e0512h21
3

4
w0S 2p

l2D DhA2K̃33. ~3.15!

As stressed above, when the collapse of the walls starts
connection between their geometrical parameters, given
Eq. ~3.14!, is lost. The minimization of the energy of th
fluctuations will lead to an independent development ofl,
D, andw0 . For example, from Eq.~3.15! it is easy to obtain
the forcef 52]e0 /]l between two neighbor walls,

f 5
3

2
pw0S 1

l2D D 2

hA2K̃33, ~3.16!

which is repulsive and decays with the inverse of the squ
of the portion of the wall,w5l2D, where there is the di-
rector bending—see Fig. 2. That is, the shorter the bend
tion is, the more repulsive is the force between the wall. T
can also be seen in Eq.~3.15! because the shorterD is, the
shorter will be the energy stored in the fluctuation. Fina
the minimization of the energye0 led us to a similar conclu-
sion for w0 : the shorterw0 is, the shorter will bee0 .

Summarizing, the fluctuations lead to the destruction
the walls’ regular pattern by means of three mechanisms~a!
a repulsive interaction;~b! the reduction of the walls’ satu
rated portion;~c! the reduction of the walls’ amplitude.

Since the sample has a large number of equally spa
walls, the repulsive force between them may be counter
anced and the net result may be an equilibrium situat
However, there is no way to get a counterbalanced effec
the reduction of the walls saturated portionD or in the re-
duction of the walls amplitudew0 . Therefore the reduction
in D andw0 starts the destruction of the walls.

IV. CONCLUSION

We have used the Jacobi theorem about quadratic fo
to demonstrate that, due to the matter flux, the o
dimensional periodic walls are built in a configuration th
even being an extremum of the Frank free energy, is n
local minimum but a local maximum of it. It was shown ho
the fluctuations, localized at the positions where the direc
even in the magnetic field presence does not bend at all,
to the destruction of the walls’ regularity. A simplified mod
was constructed for these walls and it was shown how t
geometrical parameters start an independent evolution to
walls’ end.
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To arrive at these conclusions, the experimental fact t
the walls are one-dimensional has been used. Neverthe
the fluctuations need not be one dimensional. Indeed, a re
quantitative treatment of this problem has to take into
count explicitly the time evolution of the fluctuating param
eters characterizing the walls’ end as a three-dimensio
problem. Of course this would result in a very difficult pro
lem. However, in the approach presented above the fluc
tions were treated as a one-dimensional problem and the
sult obtained makes sense on physical grounds. The ess
of this result is that the fluctuations that destroy the walls
the ones localized at the places where the director does
bend at all.
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APPENDIX

We begin by remembering that it is an experimental a
theoretically well established fact@3,9# that the walls arise as
a one-dimensional and period structure. Consequently,
assume that the director profileu(x,y,z) can be approxi-
mated by

u~x,y,z!5h~x!sinS py

b D sinS pz

d D , ~A1!

whereh(x) describes the bending of the director along thex
direction. Along they andz directions we suppose that th
director assumes the simplest possible profile for
sin(py/b)sin(pz/d) . This was done to make easy further ca
culations and, mainly, to clearly explore the one-dimensio
character of the walls. Anyway, if other reasonable forms
the bending of the director along these directions are
sumed, our results will not change because, as it will be se
the core of our conclusions lies in the oscillatory characte
h(x).

By using Eq. ~A1! and assuming that xaHc
2

5K33(p/b)21K22(p/d)2, and h5H/Hc , Eq. ~2.2! can be
set in the form

F5
1

4
bdxaHc

2E
0

a

Fdx,

where ~A2!

F5
1

2
K̃33~]xh!21

1

2
h222h2u~h!,

u„h(x)…[*0
1*0

1dỹ dz̃sin2
„h(x)sin(pỹ)sin(pz̃)…, K̃335K33/

(xaHc
2), anda is the sample length along thex direction.

Equation~A2! is the one-dimensional version of Eq.~2.2!
and the corresponding Euler-Lagrange equation is given
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K̃33]x
2h02h012h2u8~h0!50, ~A3!

which has to be solved for the strong anchoring conditio
h(0)5h(a)50.

Let us now consider a free-energy fluctuation around
walls described by Eq.~A3! in the form

F5F01
1

4
bdxaHc

2H dF1
1

2
d2FJ , ~A4!

where

dF5E
0

L

dx$@h22h2u8~h!#dh1K̃33~]xh!d~]xh!%

~A5!

and

d2F5E
0

L

dx$K̃33~]xdh!21@122h2u9~h!#~dh!2%,

~A6!

with u8(h)5du/dh, u9(h)5d2u/dh2. The extremumF0 is
obtained by imposingdF50, which leads to Eq.~A3!.
Therefore, any small fluctuation around these configurati
will lead to a change in the elastic energy of the form

F5F01
1

8
bdxaHc

2d2F. ~A7!

It follows from this equation that a necessary and su
cient condition for the energy of the walls sequenceF0 to be
a local minimum is thatd2F>0. It will be shown now that
there are fluctuationsdh for which d2F,0, thus indicating
that the MW configuration is an unstable one.

To demonstrate thatd2F is indeed negative, we use th
following ~Jacobi! theorem@11#:

The quadratic functional

E
a1

a2
$P~x!~]xh!21U~x!h2%dx, ~A8!

whereP(x).0, a1,x,a2 , is positive definitefor all h(x)
such thath(a1)5h(a2)50 if and only if the solution ofthe
differential equation
ys
s

e

s

-

2
d

dxS P~x!
d j~x!

dx D1U~x! j ~x!50, ~A9!

with the boundary conditions j(a1)50, dJ(x)/dx/ t5a1
51,

does not vanishesin the intervala1,x,a2 . The pointc,
a1,c,a2 , at which j (c)50, is said to be a conjugate poin
of the pointa1 , and j (x) is know as the Jacobi field of th
quadratic form given in Eq.~A8!.

Therefore, if we intend to show that the quadratic for
d2F given in Eq.~A6! is negative, in the interval 0,x,a,
all that we have to do is to show that its associated Jac
field j (x), which is the solution of the differential equation

2K̃33

d2 j ~x!

dx2
1@122h2u9~h!# j ~x!50 ~A10!

subjected to the boundary conditions stated above, ha
least one conjugate point in the interval 0,x,a.

To demonstrate that there are indeed conjugate point
the interval 0,x,a , we observe that the functionh08(x)
[]x@h0(x)# also satisfies the differential equation given
Eq. ~A10! @it is enough to differentiate Eq.~A3! with respect
to x]. But h08(x) is not a Jacobi field because it does n
satisfy the appropriate boundary conditions. For exam
h08(0)Þ0. As j (x) and h08(x) satisfy the same differentia
equation, the WronskianW(x) of these two solutions is a
constant, i.e.,

W~x!5 j ~x!h09~x!2h08~x! j 8~x!5cte. ~A11!

Using this equation and the fact that along one period th
will be necessarily two consecutive points,x1 andx2, where
h08(x) is zero, we find

h09~x1! j ~x1!5h09~x2! j ~x2! ~A12!

but, asx1 andx2 are the extremum ofh0(x), in a period the
sign of h09(x1) is necessarily the opposite ofh09(x2). There-
fore, j (x) changes sign between the two consecutive turn
pointsx1 andx2, which lead us to the conclusion that the
must exist in this interval a pointc for which j (c)50. Con-
sequently, by the Jacobi theorem we haved2F,0, and the
configurationh0(x) is necessarily unstable.
s
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