PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Fate of magnetic walls in nematic liquid crystals
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The origin of the instability that leads to the disappearance of the one-dimensional periodic walls formed
above Fredericksz’s threshold of some nematic liquid crystals is investigated. It is shown that these walls are
built in a configuration that—even being an extreme of the elastic free energy—is not a local minimum, but a
local maximum. The mechanism that gives rise to this instability is investigated, and it is shown how the
director’s fluctuations lead to the destruction of the wdl&1063-651X98)07308-3

PACS numbg(s): 61.30.Gd, 61.30.Jf, 64.70.Md

I. INTRODUCTION flow becomes negligible and disappears. Of course, the fact
that the walls do not have the least energy is a necessary
For a broad class of oriented nematic liquid crystalscondition, but not sufficient, to promote its instability. Our
(NLC), with positive diamagnetic anisotropy, the action of aim in this work is to grasp the mechanisms by which these
an external magnetic field can lead to the formation of onestructures begin their decay and for this purpose some math-
dimensional periodic structuregvalls) above the Freder-  ematical analysis must necessarily be done. This does not
icksz threshold1,2]. This phenomenon has been the subjectmean that the understanding of the fate of the walls cannot
of several works dealing with its theoretical and experimenbe put in physical terms. In fact, the fluid flow leads the
tal aspect$3,4]. Since the pioneering work of Lonbeeg al.,, system to a configuration that is an extremum of the energy
there has been a more or less well-established framework tout, as a simple elastic argument shows, it is not the configu-
interpret the main mechanism of tfemationof these struc- ration with the least energy. But even not being in the ground
tures. Recently, this subject has achieved a renewed interesttate, the walls could be in a local minimum at which the
because there are some open problems concerning the fatgstem might remain indefinitely. We will show that, as the
i.e., the destination of these periodic structures. It is wellexperiments confirm, the MW configuration is indeed a local
known that for values of the applied magnetic field far abovemaximum. In order to prove it, the second functional deriva-
the Fredericksz threshold, the walls tend to disappear aftetive of the free energy around the walls’ configuration must
some time[5,6]. The basic mechanism for the destruction of be studied. As in the differential calculus, the system will be
these walls(henceforth denoted by MWis the instability in an unstable configuration if this second functional deriva-
beginning at the moment in which the flux of matf8f that  tive is negative. One appropriate tool for deciding the sign of
gives rise to these structures stops. In this moment the exhe second functional derivative is the Jacobi critefibh],
tremely harmonic and periodic walls pattern begins an unand through it we will show that around the walls the second
stable phase in which all its one-dimensional and periodidunctional derivative is really negative. An important aspect
regularity is lost. of this demonstration is that nothing more than the oscilla-
Habitually unstable configurations are found in physicaltory and one-dimensional character of the MW must be as-
systems after the action of some transient force operatingumed. Therefore, these walls’ characteristics must be at the
during a finite time interval7,8]. While the transient action core of the reasons for their instability.
is working, the system goes to a configuration that, as soon Another contribution of this work is the understanding of
as it vanishes, no longer has the least energy. In the case tife mechanism of decay of the walls. It will be shown that
the building of MW, the transient force is given by the flux the fluctuations responsible for the walls’ decay are localized
of the nematic material inside the samp8, which is also  in the regions where the director, even in the presence of the
responsible, for example, for the system regularity and diexternal magnetic field, does not turn at all. Along these
mensionality[9]. In a remarkable work, Lonbergt al. [3] regions—which are the site of the walls’ nodes—there is a
have shown how this mechanism works: the external mageritical balance between the action of the external magnetic
netic field rotates the director, which, in turn, stimulates afield that tries to turn the director direction and the elastic
fluid flow generating a nonuniform rotation pattern of the energy that, due to the opposite configuration of the director
director. This rotation reinforces opposite rotations of neigh-n the neighbor regions, tries to maintain the director with a
boring regions of the sample. This fluid flow process hasull bending. As we will demonstrate, the instability only
been confirmed by many experimental and theoretical studiesppears due to the weakness of this balance. Around the
[10]. Moreover, it has been shown that as soon as the diregoints of null bending, the fluctuations will increase expo-
tor reaches its maximum bending, the velocity of the fluidnentially and destroy the walls’ regularity.
This paper is organized as follows. Section Il is dedicated
to the presentation of the basic equations of the theoretical
*Permanent address: Departamento dsicR) Universidade Es- approachthe mathematical details are left to the Appendix
tadual de MaringaAv. Colombo, 5790, 87020-900 Maring2R, It is shown that, although it is at an extreme of the elastic
Brazil. free energy, the system is at an unstable configuration be-
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cause it is in a local maximum. In Sec. lll, we present the . 9,60= Y1 Wy — 72[Axy(n§_n32/)+(Ayy_Axx)nxny]

main results of our calculations, with emphasis on the

mechanlsm by which this instability beglns the walls’ decay._ +Ksd 926 +&§0]+ K002 6+ XaHznxnyv

We also discuss how any small fluctuation around the equi- (2.4)

librium position of the MW gives rise to an irreversible ex-

ponential growing process of destruction of the parameterg/here the inertial terms were not considerggand y, are

that characterizes the walls. In Sec. IV, some concludinghe shear torque coeﬁicientaaﬁz%(aavﬁJr IgVa) Wop

remarks are drawn. =3(d4Vs—5V,), and, as usual, the fluid is considered in-

compressible. Since the viscosity tensgy, appearing in

Eq. (2.3, and the coefficients of Eq2.4) depend oné

[1,18,19 through combinations of,, n,, and its powers,
The aim of this section is to show that the transient thathese two differential equations result in a set of coupled, and

takes the system to an unstable configuration is the cohereatrongly nonlinear, equations. Of course, it seems impossible

motion of the nematic material, and that the structures builto find any analytical solution of this problem with the cor-

in this way do not possess the smallest possible energy, beect boundary conditions. Srajet al.[10] studied a numeri-

ing a local maximum. In order to prove this statement, it iscal solution of these equations, using the parameters of the

assumed that the NLC can be described by the so-callegoly-y-benzil-glutamatéPBG). From the results of their pa-

Eriksen-Leslie-Parodi approa¢h2—16 and it is considered per, it is possible to see that after some minutes the bending

a slab with dimensiona along thex axis,b along they axis,  of the director reaches its maximum val@e., ,=0) and

andd along thez axis such thae>b>d. The system is the matter flux flow becomes zero (i.&'=0). By substitut-
previously prepared to be uniformly aligned along theli-  ing this condition in Eq.2.3 and Eq.(2.4) one discovers
rection. After that, an external controlled magnetic field  that Eq.(2.3) becomes identically zero, and E&.4) results
greater than the Fredericks threshold, is applied along/the in

direction[17]. To describe the textures produced in the nem-

atic material, the components of the director are expressed by Kad 950+ 9501+ K070+ xaH?nny=0, (2.5
the planar geometry:

Il. FUNDAMENTALS

which is the equation governing the steady state of the walls.
Equation(2.5) describes the configuration assumed by the
system after the coherent movement of the nematic fluid has
ceased. It is also the equation that gives us the extrema of the
whered(x,y,z) is the angle between the directomand thex ~ Frank free energy, Eq2.2). Therefore, as we have pointed
direction. The expression of the total free energy in the twaout, all that the dynamics of the flux flow permit us to con-
elastic constant approximatiorK(;= Kzj), by taking into  clude is that the flux brings the system to a configuration that

account the magnetic field coupling,[#3,1,9 corresponds to an extremum of the elastic energy of the
problem. But the configuration built in this way is not static.

After some time—in many cases, several hours—these one-
F:f PKsa[(ﬁxﬁ)z +(0,0)2]+ lez(aza)z dimensional walls disappear. A typical lyotropic sample con-
v|2 y 2 sists of potassium lauratéKL, 34.5), potassium chloride
(KCI, 3.0), and water(62.5 [17]. The concentrations are
indicated in weight percent. The system is in the nematic
—EX H2n2! dvV (2.2) calamitic phase ;) at room temperature. The method of
278 Y ’ generating the periodic distortion of the director consists in
orienting an ) sample in a planar geometry, with a mag-

whereK;, K,,, andK s are the elastic constants of splay, Netic field (H=10 kG along thex axis). After a well-
twist, and bend, respectively, and is the volume of the oriented sample is achieved, the field is applied alongythe

Ny=Ccov(X,y,2z), ny =sind(x,y,z), n,=0, (2.1

sample. axis. In Fig. 1, three different moments of the walls’ collapse
The motion of nematic fluid is described through the an-N & NLC sample are shown. In the first photo, one sees the
isotropic version of the Navier-Stokes’s equation walls as they appear as soon as the coherent movement of the

nematic fluid finishes. In the second photo, the collapse has
started and the walls begin to lose their regularity. In the last
f9_Va+ Wa|_ 0 5 o+ 53  Photo, the one-dimensional and periodic walls no longer ex-
P\ ot k Xg B axﬁ( POupT 0gal, 23 ist and all that remains are vestiges of the original structure.
This decay can be understood only if the elastic energy of
MW is not the lower energy allowed in the system. This is
) . : ; indeed trug20] and a simple comparison between the two
of Fhe vellocny,p is the pressure, a.ndﬂ_a is the associated configurationgwith walls and without themcan tell us that
anisotropic stress tensftt, 18,19, which is dependent on the o resence of the walls puts the system out of its ground
velocity of the fluidV, on the bending of the direct@t, and  state. But it is not sufficient to show that this new state is an
on its time variation rate. unstable one. However, if we could show that the walls are
In the geometry fixed above, the equation of motion of thein a local maximum of the free energy, we could be sure of
director (balance of torque equatipassumes the forrf] the instability, because any small fluctuation will lead the

wherep is the density of the syster,, is thea component
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FIG. 1. Lyotropic calamitic nematic phase in microslide 200 mm thick between crossed polarizers in the presence of magtetic field
~3 kG Walls parallel toH: (a) typical periodic distortions(b) the walls begin to lose their regularity, after a time of exposure to the
magnetic field of 15 h{c) the one-dimensional and periodic walls no longer exist and all that remains are vestiges of the original structures
(after 40 h.

system to a new configuration. The main objective of thise,<<0 and these ones are the eigenvalues responsible for the
work is just to show that this is in fact the case. walls’ destruction. There is a simple way to understand the
Since the formal proof of this fact requires extensiveorigin of these negative eigenvalues. Notice that by perform-

mathematics, it was placed in the Appendix, where it ising the associationKs;—#%2/2m, Eq. (3.2 becomes a

proved that the walls’ configuration is indeed a local maxi-schralinger-like equation for a wave function represented by
mum of the free energy. Nevertheless, the idea behind thg,n iy a potential given by

proof is quite simple. The second functional derivative of the

free energy around the walls’ configuration is computed and U(x)=1-2h%u"(n(x)). (3.9

it is shown that such a derivative is negative. Therefore, this

cannot correspond to a stable configuration because even the Using this association it becomes easy to understand that
natural fluctuations of the system are enough to lead it téhe negative eigenvalues of E.2) can only exist around

another configuration. the regions where the potentidi(x) is negative. It will be
shown[see EQq.(3.8) and subsequent discuss]ahat these
ll. THE COLLAPSE OF THE WALLS points can occur only at the points wheye=0 and this will

prove that the regions where the director does not bend at all
We have shown in the Appendix that the walls’ configu- are the ones responsible for the walls’ decadence. Further-
rations is unstable because there are fluctuatiénsthat  more, as this null bend of the director only exists due to its
make the quadratic forné®F, given in Eq.(A6), negative.  oscillatory character, one concludes again that the director
However, no indication about the dynamics of this collapseperiodic profile is one of the reasons for the collapse of the
was made nor any trace of the kind of fluctuations that dewalls.
stroy the walls’ regularity was found. The study of how we  Tg see the effect of these negative eigenvalues in the time
can find these destroyer fluctuations and extract from therﬂevek_)pment of the system, it is enough to take into account

their meaning is the aim of this section. The key of ourgq.(2.4) and to observe that, as soon as the fluid flow stops,
search will be the use of the fact that E§6) is a quadratic it becomes

form. Therefore we can diagonalize it and its negative eigen-
values will correspond to the normal modes of the fluctuation Y10in=Kased2n— n+2h2u’ (1), (3.5
that erodes the walls.

Let us consider Eq(A6), which, after an integration by Where"&l:

parts, can be written as 4v,/bdy,H. Now, if we setn= 5o+ 675, where

70 IS @ solution ofSF=0 , one obtains fo6# the differen-

L tial equation

52|:=f dx 8n{—Kgz2+[1—2h2u" ()1} 67. (3.2) B B
0 710:0n=Kaed3om—[1-2h%U"(7)]6n, (3.6

By expandingd in the form dn=ZX_,c 69", wheredn"  which governs the time behavior of the fluctuation. As is

belongs to a complete set of functions in which edeff is  ysual for the statistical fluctuatiorg2,23, this equation is

a solution of the Sturm-Liouville probler21], analogous to the time-dependent Sdlinger equation. Ob-

- viously, this is only a formal analogy and it does not mean
—Kaadz (69" +[1-2hu"(7)]167"=€,07", (3.2 that the nematic structure has something to do, at least di-

rectly, with quantum mechanics. Using the expansiod pf

Eq. (3.1) becomes in its normal components, E@3.6) becomes a set of equa-
tions with the form

8°F =D, e(c,)?. (3.3 ~
“21 nlCn Y10tCh= — €,Cp, (3.7

As it has been proved that there are fluctuations for whictwhich, oncee,, are found, have a trivial solution. The impor-
5°F<0 , there must be some,, at least one, for which tant aspect of these equations is that all the fluctuatioss
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—~~

with positive eigenvalueg,, are exponentially suppressed, §
while the ones with negative eigenvalues will grow exponen-%’ AR
tially. : T

We use now the formal analogy between the time devel-g.
opment of the fluctuations and the time-dependent Schro
dinger equation to obtain a glimpse of how these negative ] 5A2
modes start the MW destruction. In the expansion of the a0 \ Wallongh )
potentialU(x), Eq.(3.4), around the points wherg~0, one g0 A 023 047 08 A 08A Ok
obtains

154

-0.54

U(x)=1—h2+§h2[n’(0)]2x2, (3.9

where it was used(x)=x7'(0). Equation(3.8) shows that FIG. 2. Graphic repre;entation of a t_ypical v_vaII. It is explicitly
in the regions around the null bending of the director, theSNOWn the saturated portiaw2, the bending portio@h/2, and the
potentialU (x) is really negative m2>1 andx2<1) and can _amplltudecpo. The irreversible exp_onentlal growing fluctuatlons_ act
be approximated by a parabolic well. Putting this potential in such away to reduce the amplitugg and the saturated portion
Eq. (3.2, and remembering that this equation is a

Schralinger-like equation, we see that its most negative ei-

genvalue is nothing more than the groEnd state of a quantum ( sin(Z_va), 0<x<£w,
oscillator. If one again identifiesKg;—#2/2m, and w 4
9/9 5'(0)]>— 1/2mw?, one obtains for the ground state of . 1 A1
Eq. (3.2 e(x)=4 L, ZW<X<§ W
_ (277()\ )) T
sinl—| 5 —x = -w<x<gz
3 ~ w2 2 4 2’
€o=1—h%+ Zh\/ZKggn’(O), (3.9 . (3.1

¢

A A A

which will be the leading term of the walls’ destruction. 2 +€) B (P( 2 6)’ 0< E<2' W= o\,

In this term it can be observed that(0) is the parameter )
of the wall that determines the magnitude of the ground stat¥here 5, changing between 0 and 1, controls the wall form
€o. The smallem’(0) is, the more negative, will be and  (Fig. 2. The MW described byp(x) has two distinct re-
the greater the fluctuations will be. Since by E8.7) these ~ 9ions. In one of thenithe w region the director bends its
fluctuations must grow with time, one concludes that0) orientation from one configuration to the symmetric one. The
will become smaller and smaller with time. This fact can alsoother region(the A region describes a saturated portion of
be understood by Observing tlfm is the energy of the fluc- the dlreCIOI’. Th&s Value g|VeS the fl’acthn Of ea.C-h pOI’tlon.
tuations at the well given in Eq3.8) and, therefore, the least Whené— 1, the wall becomes a single sine function. On the
energy will have the smallen’(0). In other words, if one ©Other hand, whe—0 the saturated region assumes the en-

computes the generalized force associated with the variablé® wall. One observes from Fig. 2 that

n’(0), f=—dey/dn’(0), oneobtainsf = — 2h 2R33, which A=A—w=\(1-9) (3.12
gives the same result: since the force is negative, the time
evolution of the system will diminisim’(0). is a measure of the saturated portion of the wall. Further-

In order to fully appreciate the details of the walls’ wast- more, Eq.(A3) has a conserved quantif§7,24,29
ing process, we construct a wall profile in which its geo-
metrical parameters are made clear and workable. Of course
it is not the exact solution of EGA3), but it results from a
numerical study of the solutiofl7,24] that is useful only as
long as it can help us to understand the fate of the walls. Thighich reflects the homogeneity of the system along xhe
wall profile is described by three parameters: the walls’ amdirection and is a fixed number that exists only as long as the
plitude ¢, the walls’ lengthk, and the walls’ form factos, system remains one-dimensional. Therefore, its value at the
which are shown in Fig. 2. An analytical form for this wall is point where »=0 can be compared with its value at the
given by region whered, =0, giving

1_ 1
C= R am?= 5 72+20%u(n), (313

21

1.
2 A—A

7(X) = @o@(X), (3.10 oK 330

which shows that as long as the system is one-dimensional
where it is assumed that the parameters, A, and ¢, are not independent.

2 1 2 2
= - Sebt2htueo), (314
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As we have already remarked, the cornerstone of the in- To arrive at these conclusions, the experimental fact that
stability is the one-dimensional and oscillatory character othe walls are one-dimensional has been used. Nevertheless,
the walls. Therefore, the starting point of the walls’ decay isthe fluctuations need not be one dimensional. Indeed, a really
strongly connected to the breakdown of this character. Thquantitative treatment of this problem has to take into ac-
system has to abandon the one-dimensionality. It has beerount explicitly the time evolution of the fluctuating param-
demonstrated, in Eq3.13), that the one-dimensional char- eters characterizing the walls’ end as a three-dimensional
acter of the walls leads to the conservation of a quantity thatproblem. Of course this would result in a very difficult prob-
in Eq. (3.14), connects their geometrical parameters. Thdem. However, in the approach presented above the fluctua-
collapse of the walls begins with the destruction of this con-+tions were treated as a one-dimensional problem and the re-
nection. This means that, if the system tries to be non-onesult obtained makes sense on physical grounds. The essence
dimensional these parameters must evolve independentlgf this result is that the fluctuations that destroy the walls are
Let us show now in what manner this happens. the ones localized at the places where the director does not

By using the value ofh’(0), obtained from Eq(3.11), bend at all.
and by putting it in Eq(3.9), one obtains
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=1 h2+3 2m
€= 4<P0 N—A

the forcef=—dey/IN between two neighbor walls, APPENDIX
3 1 \2 _ We begin by remembering that it is an experimental and
f= 570 m) hV2K3s, (3.16 theoretically well established fag3,9] that the walls arise as

a one-dimensional and period structure. Consequently, we

which is repulsive and decays with the inverse of the SquarfﬁiqS:t:rgT);hat the director profiey.z) can be approx-

of the portion of the wallw=\—A, where there is the di-

rector bending—see Fig. 2. That is, the shorter the bend por- my 7

tion is, the more repulsive is the force between the wall. This 0(x,y,2)= n(x)sin(—)sin( —) , (A1)
can also be seen in E(3.15 because the shortex is, the b d

shorter will be the energy stored in the fluctuation. Finally,

the minimization of the energy, led us to a similar conclu- Wheré»(x) describes the bending of the director alongxhe

sion for ¢y the shorterp, is, the shorter will bee, . d?rection. Along they andz _directions we suppose _that the
Summarizing, the fluctuations lead to the destruction ofi'éctor assumes the simplest possible profile form,
the walls' regular pattern by means of three mechaniggys: SiN(my/b)sin(zz/d) . This was done to make easy further cal-
a repulsive interaction(b) the reduction of the walls’ satu- culations and, mainly, to clearly _explore the one-dimensional
rated portion;(c) the reduction of the walls' amplitude. character. of the walls..Anyway, if other reaspnaple forms for
Since the sample has a large number of equally spacet&e bending of the Q|rector along these d|rec.t|on.s are as-
walls, the repulsive force between them may be counterbafUMed; our results will not change because, as it will be seen,
anced and the net result may be an equilibrium situationthe core of our conclusions lies in the oscillatory character of

However, there is no way to get a counterbalanced effect ir¥ X).

: - 2
the reduction of the walls saturated portidnor in the re- By using Eq. (Azl) and assuming that y,H¢
duction of the walls amplitude,. Therefore the reduction = Kaa(7/b)*+Kz(7/d)?, andh=H/H., Eq.(2.2) can be
in A and ¢, starts the destruction of the walls. set in the form
1 > (2
IV. CONCLUSION F= Zbd)(chjo FdXx,
We have used the Jacobi theorem about quadratic forms
to demonstrate that, due to the matter flux, the one- here (A2)

dimensional periodic walls are built in a configuration that,

even being an extremum of the Frank free energy, is not a 1 1

local minimum but a local maximum of it. It was shown how F= _R33(‘9x77)2+ = n?°—2h%u(p),

the fluctuations, localized at the positions where the director 2 2

even in the magnetic field presence does not bend at all, lead o _ o

to the destruction of the walls’ regularity. A simplified model U(7(x))=/5/5dy dzsirP(n(x)sin(my)sin(mz)), Kaz=Kas/

was constructed for these walls and it was shown how theif)(aHg), anda is the sample length along thedirection.
geometrical parameters start an independent evolution to the Equation(A2) is the one-dimensional version of EQ.2)
walls’ end. and the corresponding Euler-Lagrange equation is given by
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R33{9>2<7]0_ 7]0+ 2h2U,(770):0, (A3) _ i d](X) . _

| _ 3 ax P(x)—dx +U(x)j(x)=0, (A9)

which has to be solved for the strong anchoring conditions

7(0)=n(a)=0. with the boundary conditions(#;) =0, dJ(x)/dx/;-,, =1,
Let us now consider a free-energy fluctuation around thgjyes not vanishe the intervala,<x<a,. The pointc

walls described by EGA3) in the form a;<c<a,, at whichj(c)=0, is said to be a conjugate point

1 1 of the pointa;, andj(x) is know as the Jacobi field of the
F=Fo+ —bdy,HZ 6F + 552F}’ (A4)  quadratic form given in EqA8).
4 Therefore, if we intend to show that the quadratic form

5%F given in Eq.(A6) is negative, in the interval @x<a,
all that we have to do is to show that its associated Jacobi
field j(x), which is the solution of the differential equation

where

L ~
5F=f dx{[ 7—2h2u’ (1) ]189+ Ksxdxn) 8(3xn)}
° _ (%)

(A5) —Kgg———+[1-2h%u"(n)]j(x)=0  (A10)
dx

and

L subjected to the boundary conditions stated above, has at

52F:f dx{R33(r9X57;)2+[1—2h2u”(17)](57;)2}, least one conjugate point in the intervak@<a.
0 To demonstrate that there are indeed conjugate points in
(AB)  the interval 0<x<a , we observe that the function)(x)
Gy neoN— A2 2 - =4,{ no(x)] also satisfies the differential equation given by

\évgtgil; e(dn)bydit:g:)g'si%g(gll—‘L g uﬁ{éh TQ:dZXt{nguqu&?’l)s_ Eqg. (A10) [it Es enpugh to differenti:_:tte E@A3) With_ respect
Therefore, any small fluctuation around these configurationg0 x]. But 7,(x) is not a Jacobi field because it does not

will lead to a change in the elastic energy of the form satisfy the appropriate boundary conditions. For example,
76(0)#0. As j(x) and n4(x) satisfy the same differential

1 2w equation, the WronskialV(x) of these two solutions is a
F=Fo+ gbdxaHc5F. (A7) constant, i.e.,
It follows from this equation that a necessary and suffi- W(x)=]j(x) m5(X) = mp(X)] " (x)=cte. (A1l

cient condition for the energy of the walls sequefgeo be ) ) . )
a local minimum is tha®?F=0. It will be shown now that Using this equation and the fact that along one period there

there are fluctuations» for which §2F <0, thus indicating  Will be necessarily two consecutive points, andx,, where

that the MW configuration is an unstable one. 70(X) is zero, we find
To demonstrate tha#®F is indeed negative, we use the y .
following (Jacobj theorem[11]: 70(X1) ] (X1) = 7p(X2) (X2) (Al12)

The quadratic functional ] ]
but, asx; andx, are the extremum ofyp(x), in a period the

a sign of 7g(x,) is necessarily the opposite @f)(x,). There-
LI PO+ U 7}dx, (A8) fore, j(x) changes sign between the two consecutive turning
pointsx; andx,, which lead us to the conclusion that there
whereP(x)>0, a;<x<a,, is positive definitdor all 7(x) must exist in this interval a poirtt for which j(c)=0. Con-
such thatp(a;) = 7(a,) =0 if and only ifthe solution ofthe ~ sequently, by the Jacobi theorem we ha#€& <0, and the
differential equation configurationzg(X) is necessarily unstable.
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